
Technical Report for FedWCM

A Analysis of FedWCM under Different Data
Partitioning

We opted for a custom data partitioning approach to ensure
that the data across clients is roughly consistent. Existing
long-tailed heterogeneous datasets often present challenges
due to extreme data imbalance. To verify the applicability of
our method on other datasets, we implemented FedGrab [7]’s
data partitioning and conducted comparative experiments.

A.1 Problem Description
There is currently no universal method for long-tailed hetero-
geneous partitioning. BalanceFL [15] uses its own long-tailed
heterogeneous partitioning, while CLIP [21] and Creff [13]
(using the same partitioning), FedGrab, and our approach
first generate a long-tailed dataset, followed by Dirichlet par-
titioning. However, this methodology has a drawback: when
partitioning a long-tailed dataset, the sampling from long-
tailed data means that even with Dirichlet sampling, origi-
nally majority classes are likely to remain majority classes
on clients.

CLIP and Creff, along with FedGrab, provide two parti-
tioning methods, both generating Dirichlet distributions for
each class and then allocating to clients. Yet, this can lead
to some clients having no data (i.e., proportions in all classes
are so low that they do not constitute even one data point,
especially when the imbalance factor is small). To address
this, the former repeatedly samples until the requirement is
met, which may indirectly control the degree of long-tailed
distribution, while the latter assigns at least one data point
to each client.

For our method, the original momentum-based method [2,
18] initially did not address the issue of inconsistent data
quantity due to two reasons: 1) Solving heterogeneity issues
does not necessarily require addressing quantity heterogene-
ity [20], as they primarily target distributional heterogeneity.
2) The momentum base method introduces a fixed global mo-
mentum in a weighted manner each round. Therefore, when
there is a large disparity in data quantity between clients,
more data leads to more batches. This results in multiple
additions of momentum in that client, negating the intended
effect of reducing client variance.

Secondly, our main text introduces a method that weights
based on data distribution. If we use a common method for
addressing data quantity heterogeneity, weighting by data
quantity, it may overlap with our method, preventing an
effective analysis of our method’s effects.

Lastly, our comparison in the main text is also justified,
because if a method can address data quantity heterogeneity,
it should also perform well in non-heterogeneous scenarios.
Here, we supplement experiments with partitioning methods
that increase data quantity disparity, demonstrating the ap-
plicability of our method under various data distributions.

Algorithm 1 FedWCM-X Algorithm
Require: initial model 𝑥0, global momentum Δ0, 𝛼0 = 0.1,
learning rates 𝜂𝑙 , 𝜂𝑔 , number of rounds 𝑅, local iterations
𝐵, standard iterations �̂�
Compute {𝑠𝑘} with 𝐷𝑔 using Equation (3)
for 𝑟 = 0 to 𝑅 − 1 do

Sample subset 𝒫𝑟 of clients
for Each client 𝑘 ∈ 𝒫𝑟 do

𝑥 𝑟0,𝑘 = 𝑥𝑟
𝜂′𝑙 = 𝜂𝑙 ⋅ �̂�

𝐵𝑘
for 𝑏 = 0 to 𝐵𝑘 − 1 do

Compute 𝑔𝑟𝑏,𝑘 = ∇𝑓𝑘(𝑥 𝑟𝑏,𝑘 , 𝐷𝑏,𝑘)
𝑣𝑟𝑏,𝑘 = 𝛼𝑟𝑔𝑟𝑏,𝑘 + (1 − 𝛼𝑟 )Δ𝑟
𝑥 𝑟𝑏+1,𝑘 = 𝑥 𝑟𝑏,𝑘 − 𝜂′𝑙 𝑣𝑟𝑏,𝑘

end for
Δ𝑟
𝑘 = 𝑥 𝑟𝐵𝑘 ,𝑘 − 𝑥𝑟

end for
Compute 𝑤𝑟

𝑘 using Equation (4)
𝑤′𝑟
𝑘 = 𝑤𝑟

𝑘 ⋅
𝑛𝑘

∑𝑗 𝑛𝑗
Compute 𝛼𝑟+1 using Equation (5)
Δ𝑟+1 = 1

𝜂𝑙 �̂�
∑𝑘∈𝒫𝑟 𝑤′𝑟

𝑘 Δ𝑟
𝑘

𝑥𝑟+1 = 𝑥𝑟 − 𝜂𝑔Δ𝑟+1
end for

A.2 Method Generalization
Our original method assumed that clients have similar amounts
of data. To address scenarios with significant disparities in
client data quantities, we proposed an improved FedWCM
for high quantity skew, naming FedWCM-X, as shown in Al-
gorithm 1. In detail, we outline the two steps required for
this extension:

1. Building upon the existing weighting, we additionally
weight by data quantity. Specifically, if the current round’s
weight is 𝑤𝑘 , we now multiply it by 𝑛𝑘

∑𝑗 𝑛𝑗
, where 𝑛𝑘 represents

the data quantity of the 𝑘-th client.

𝑤′𝑘 = 𝑤𝑘 ⋅
𝑛𝑘

∑𝑗 𝑛𝑗
2. We adjust the learning rate 𝜂𝑙 based on the batch num-

bers corresponding to different data quantities. This involves
dividing 𝜂𝑙 by the current batch number 𝐵𝑘 , and then multi-
plying by a standard batch number �̂�, which is the number
of batches a client would have if the data were evenly dis-
tributed across clients.

𝜂′𝑙 = 𝜂𝑙 ⋅
�̂�
𝐵𝑘
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A.3 Experimental Section
We illustrate the superiority of our method over six other ap-
proaches through an accuracy variation graph on this dataset(
as shown in Figure 1), using the partitioning strategy based
on FedGrab [7].

Figure 1: Data distribution under the setting of 𝛽 = 0.1,
𝐼 𝐹 = 0.1, partitioned according to FedGrab.

The dataset exhibits significant imbalance across clients,
with approximately 10% of clients holding over 50% of the
total samples, while around 40% of clients possess less than
10% of the samples. Additionally, certain clients predomi-
nantly represent a few classes, leading to skewed class distri-
butions. This imbalance not only necessitates robust meth-
ods to ensure equitable participation and effective model ag-
gregation across all clients, but also poses significant chal-
lenges for the implementation and weighting of momentum.
In scenarios with uneven data quantities, momentum meth-
ods may be dominated by a few clients with large datasets,
potentially impacting the overall model performance.

From Figure 2, we can observe that FedWCM in brown
line maintains a high convergence speed in the early stages
of training, and its final convergence accuracy is compara-
ble to FedAvg in purple line and BalanceFL in gray line.
The lack of its original significant advantage is attributed to
the interference caused by weighting based on quantity and
inherent weighting, which affects the gradient aggregation
effectiveness. On the other hand, the average performance
of FedGrab in green line may result from differences in set-
tings such as batch size and number of clients compared
to the original experiment. Other potential improvements
based on FedCM do not converge.

Figure 2: Accuracy comparison of our method against six
other methods on the dataset.

Additionally, we compare FedAvg, FedCM, and FedWCM-
X under this data partitioning scheme with IF settings of 1,
0.4, 0.1, 0.06, 0.04, and 0.01. The comparison is shown in
the following table, focusing on the case where 𝛽 = 0.1.
Table 1: Comparison of various approaches under different
settings of 𝐼 𝐹 𝑠 when 𝛽 = 0.1.

IF 1 0.4 0.1 0.06 0.04 0.01
FedAvg 0.6802 0.7069 0.6219 0.577 0.5502 0.4905
FedCM 0.6696 0.7405 0.2095 0.1527 0.1438 0.1438

FedWCM-X 0.6895 0.7346 0.6236 0.5793 0.5632 0.4911

As shown in Table 1, there are notable performance dif-
ferences among various approaches under different settings.
FedWCM-X consistently outperforms other methods in most
scenarios, especially at lower 𝐼 𝐹 values, maintaining the high-
est accuracy. For instance, at 𝐼 𝐹 = 0.1 and 𝐼 𝐹 = 0.04, FedWCM-
X achieves accuracies of 0.6236 and 0.5632, respectively, sig-
nificantly surpassing other methods. In contrast, the perfor-
mance of FedAvg decreases gradually as 𝐼 𝐹 decreases, whereas
FedCM performs poorly at low 𝐼 𝐹 values, with a marked drop
in accuracy.

B Exploration of Non-Convergence in
Momentum-based Methods

In this section, we explore the mechanisms behind the non-
convergence of momentum-based methods under long-tailed
distributions. Attempts to theoretically prove non-convergence
have been challenging due to the complexity of deriving
inevitable non-convergence conclusions. In centralized algo-
rithms, as discussed in [17], causal inference has been used
to qualitatively analyze the impact of momentum on imbal-
anced data, suggesting that ”bad” effects can be removed
while retaining the ”good.” This provides some theoretical
support, indicating the adverse aspects of momentum on im-
balanced data.
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Our analysis is inspired by the Neural Collapse [5] [11] [19],
which provides a rigorous mathematical explanation. Neu-
ral Collapse describes a scenario in the terminal phase of
training deep neural networks, where classifiers and output
features form a special geometric structure called the Sim-
plex Equiangular Tight Frame when training samples are
balanced. This structure maximizes the angle between fea-
tures and classifiers of different classes, minimizing inter-
class confusion and explaining the excellent generalization
and robustness of deep neural networks.

However, when sample numbers are imbalanced, this geo-
metric structure is disrupted, leading to a new phenome-
non called Minority Collapse [5]. Majority classes dominate
the loss function, allowing their features and classifiers to
span larger angles, while minority classes are compressed,
reducing their angles. This phenomenon has been confirmed
through mathematical analysis and experiments.

Based on this theory, we observed the concentration of
neurons across different layers of the neural network dur-
ing training. We introduce line charts depicting the average
concentration changes over rounds for FedAvg, FedCM, and
FedWCM under 𝛽 = 0.1, 𝐼 𝐹 = 1 on the left, and 𝛽 = 0.1,
𝐼 𝐹 = 0.1 on the right.

Figure 3: Average neuron concentration over rounds for Fe-
dAvg, FedCM, and FedWCM under different settings. Left:
𝛽 = 0.1, 𝐼 𝐹 = 1. Right: 𝛽 = 0.1, 𝐼 𝐹 = 0.1.

From the left subfigure with 𝛽 = 0.1, 𝐼 𝐹 = 0, it can be
observed that the average neuron concentration over rounds
for FedAvg in blue line gradually decreases, whereas both
FedCM in orange line and FedWCM in green line initially
decrease and then increase. This may be due to the accumula-
tion of certain neurons’ advantages under the influence of mo-
mentum. Furthermore, the increase in FedWCM is relatively
smooth. The reason for FedWCM’s increase is that we adjust
the distillation temperature based on the global imbalance;
when the global distribution is fairly balanced, we avoid ex-
treme weighting, as experiments have shown that FedCM
performs well in non-long-tailed scenarios. From the right
plot with 𝛽 = 0.1, 𝐼 𝐹 = 0.1, it is evident that both FedAvg in
blue line and FedWCM in green line exhibit a downward
trend in average neuron concentration over rounds, with
FedWCM declining faster and more smoothly. In contrast,
FedCM in orange line shows periodic large fluctuations.

Next, we introduce three charts showing the detailed con-
centration changes for each method across layers.

It can be observed that the neuron concentration in all lay-
ers for FedAvg shows a downward trend. In contrast, FedCM
exhibits periodic large fluctuations in neuron concentration

Figure 4: Detailed neuron concentration changes across lay-
ers for FedAvg.

Figure 5: Detailed neuron concentration changes across lay-
ers for FedCM.

Figure 6: Detailed neuron concentration changes across lay-
ers for FedWCM.

across all layers, which might be the underlying reason for its
difficulty in converging to a stable point. For FedWCM, the
neuron concentration mostly decreases across layers, with
some layers experiencing an increase, but overall, it remains
very stable.

We then focus on analyzing the neuron concentration in
FedCM before and after the critical points under long-tailed
scenarios. Here, we introduce a combined image showing the
accuracy across five long-tailed scenarios and their average
concentration change.
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Figure 7: Top: Average neuron concentration change in
FedCM. Bottom: Accuracy across five long-tailed scenarios.

By comparing the Average neuron concentration and ac-
curacy change graphs of FedCM under various IF conditions,
we observe that as FedCM experiences a precipitous drop in
accuracy, its Average neuron concentration also undergoes a
sudden change. We believe there is a strong correlation be-
tween these two phenomena, possibly due to the occurrence
of the minority collapse as discussed in [5].

C Homomorphic Encryption for Data
Distribution in FedWCM

To protect the privacy of clients’ local class distribution in-
formation in FedWCM, we adopt homomorphic encryption
(HE), following the protocol used in BatchCrypt [? ]. HE
enables computations directly on encrypted data, ensuring
that operations on ciphertexts yield results consistent with
computations on plaintexts [6].

Specifically, an encryption scheme 𝐸(⋅) is said to be addi-
tively homomorphic if it satisfies:

𝐸(𝑚1) ⊕ 𝐸(𝑚2) = 𝐸(𝑚1 + 𝑚2),
and multiplicatively homomorphic if:

𝐸(𝑚1) ⊙ 𝐸(𝑚2) = 𝐸(𝑚1 ⋅ 𝑚2),
where ⊕ and ⊙ denote ciphertext-level operations.

In our implementation:
• A randomly selected subset of clients generates pub-

lic/private key pairs and distributes the public keys to
other clients.

• Each participating client encrypts their local class dis-
tribution vector using the public key and uploads the
ciphertext to the server.

• The server aggregates the ciphertexts and sends the
result back to the corresponding key holder for decryp-
tion, yielding the global class distribution.

This process assumes a semi-honest server and does not
rely on any trusted third party, aligning with the design goals
of BatchCrypt.

Since local class distributions are represented as integer
vectors, we use the BFV scheme (Brakerski/Fan-Vercauteren) [3],
which supports exact arithmetic over integers. Our imple-
mentation is based on the TenSEAL library.

To assess communication overhead, we measured the size
of both plaintext and ciphertext representations under vary-
ing numbers of classes. As shown in Table 2, plaintext size
increases linearly with the number of classes, while cipher-
text size remains relatively stable at approximately 86KB
due to fixed encryption parameters.

Number of Classes Plaintext (Byte) Ciphertext (Byte)
10 136 88556
20 216 88554
50 456 88631
100 856 88548

Table 2: Plaintext and ciphertext sizes for different numbers
of classes.

Notably, since each client only encrypts their own class
distribution, the communication cost is independent of the
number of clients. For instance, in a scenario with 100 clients
and 10-class distributions, the homomorphic encryption pro-
cess takes approximately 0.0017 seconds per client, with a
total communication size of just 13.05MB—negligible com-
pared to model transmission overhead in a typical federated
learning round.

In conclusion, our integration of HE into FedWCM en-
ables secure estimation of global class distributions during
early training, helping to mitigate class imbalance in long-
tailed scenarios while incurring minimal computation and
communication overhead.

D Supplementary Experiments
D.1 Supplementary Experiments for

Heterogeneous methods
Figure 8 and Figure 9 compare the performance of FedCM
against nine other federated learning methods under het-
erogeneous data environments. These methods include Fe-
dAvg [14], SCAFFOLD [10], FedDyn [1], FedProx [12], Fed-
SAM [22], MoFedSAM [22], FedSpeed [9], FedSMOO [8], and
FedLESAM [22]. The experiments were conducted on the
CIFAR-10 dataset with a heterogeneity level of 𝛽 = 0.1 (non-
long-tailed distribution). As shown in the figures, FedCM not
only demonstrates significantly faster convergence but also
achieves the highest test accuracy (0.71) at 100 communi-
cation rounds, outperforming all other methods. This high-
lights the strong performance of FedCM in heterogeneous
data settings.
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Figure 8: Comparison of Heterogeneous methods for train
accuracy.

Figure 9: Comparison of Heterogeneous methods for test ac-
curacy.

Using FedAvg [14] as the baseline, several classical meth-
ods, such as FedDyn [1], SCAFFOLD [10], and FedProx [12],
achieve higher test accuracy. Specifically, FedDyn, with its
dynamic regularization strategy, and SCAFFOLD, which
uses control variates to correct local updates, effectively mit-
igate the local drift caused by data heterogeneity. These
methods exhibit relatively smooth convergence curves and
achieve slightly higher accuracy than FedAvg. However, their
final accuracy still falls short of FedCM.

The three SAM-based methods, including FedSAM [22],
FedSMOO [16], and FedLESAM [4], focus on improving gen-
eralization by flattening the loss landscape. However, as ob-
served in the results, these methods exhibit slower accuracy
improvements, particularly during the early stages of train-
ing. Similarly, FedSpeed [9] also shows slow progress in the
initial stages and overall lags behind other methods, failing
to demonstrate its full potential.

In summary, FedCM demonstrates superior performance
in heterogeneous data environments, as evidenced by the
following two key aspects:

• Faster Convergence: FedCM quickly achieves high test
accuracy in the early rounds, outperforming other meth-
ods in terms of convergence speed.

• Highest Accuracy: FedCM achieves a final accuracy
of 0.68, surpassing other methods and demonstrating
strong stability and generalization capabilities.

These findings highlight the effectiveness of FedCM in ad-
dressing the challenges posed by data heterogeneity, partic-
ularly in non-long-tailed scenarios on the CIFAR-10 dataset.
The synergy between momentum mechanisms and consensus
updates plays a crucial role in improving convergence speed
and achieving superior accuracy.

D.2 Supplementary Experiments for FedGrab on
Cifar10 Dataset

In this part, We present the experimental results for FedGrab[7]
on the Cifar10 dataset, which were not included in the main
paper due to space limitations. The experiments are con-
ducted using the official reproduction code provided by the
authors. These results further demonstrate the effectiveness
of FedGrab on image classification tasks. The supplementary
experiments are based on the Cifar10 dataset, a widely-used
benchmark for image classification in federated learning. We
follow the same experimental settings as described in the
main paper, including the number of clients, local epochs,
and communication rounds. For completeness, we summa-
rize the key hyperparameters used in Table 3.

As shown in Table 3, we present the performance com-
parison across different methods (FedAvg, BalanceFL, Fed-
Grab, FedCM and its variants, FedWCM) on the CIFAR-10
dataset under different imbalance factors (𝐼 𝐹 ) and 𝛽 values
of 0.6 and 0.1. Specifically, we focus on the results obtained
by FedGrab and compare them with other methods.

From the results, we observe that while FedGrab achieves
relatively high accuracy in some cases (e.g., when 𝐼 𝐹 = 1,
𝐼 𝐹 = 0.1 and 𝐼 𝐹 = 0.5), its overall performance is still infe-
rior to FedWCM. FedWCM consistently provides better test
accuracy across all imbalance factors, especially in highly
imbalanced scenarios (𝐼 𝐹 = 0.05 and 𝐼 𝐹 = 0.01), where it
significantly outperforms FedGrab.

While FedGrab performs relatively well under 𝛽 = 0.6 in
some cases, its performance under 𝛽 = 0.1 suffers signifi-
cantly. Specifically, in highly heterogeneous data scenarios
(e.g., 𝐼 𝐹 = 0.1 and 𝐼 𝐹 = 0.05), FedGrab’s performance de-
grades sharply, as shown by the results for 𝐼 𝐹 = 0.1, where
FedGrab achieves only 32.60% accuracy, compared to 67.75%
for FedAvg and 72.07% for FedWCM. This indicates that
FedGrab is less effective in handling scenarios with increased
data heterogeneity.

In contrast, FedWCM demonstrates robustness across all
IF values, particularly under 𝛽 = 0.1, where its results re-
main consistently superior. This highlights the advantage of
FedWCM’s weighted aggregation mechanism in mitigating
the adverse effects of data heterogeneity.
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Table 3: Performance comparison on CIFAR-10 under 𝛽 = 0.6 and 𝛽 = 0.1 with varying imbalance factors (IF). The reported
results represent the mean test accuracy across 3 trials using different random seeds.

FedAvg BalanceFL FedGrab FedCM + Focal Loss + Balance Loss + Balance Sampler FedWCM

Dataset IF 0.6 0.1 0.6 0.1 0.6 0.1 0.6 0.1 0.6 0.1 0.6 0.1 0.6 0.1 0.6 0.1

CIFAR-10

1 0.7906 0.6881 0.7629 0.6813 0.7950 0.6813 0.8126 0.7092 0.8040 0.6937 0.7931 0.7169 0.8065 0.7198 0.8242 0.7337
0.5 0.7535 0.7183 0.7539 0.7429 0.7810 0.6560 0.6793 0.6686 0.6565 0.6319 0.6877 0.6924 0.6968 0.6590 0.7926 0.7968
0.1 0.6232 0.6775 0.6380 0.6541 0.6880 0.3260 0.2175 0.2393 0.1311 0.3095 0.1864 0.3016 0.2871 0.3994 0.6905 0.7207

0.05 0.5715 0.5642 0.5652 0.5535 0.5000 0.1870 0.2274 0.2358 0.2005 0.1413 0.2680 0.2525 0.1427 0.1315 0.6006 0.6132
0.01 0.4567 0.4600 0.4731 0.4616 0.3140 0.1350 0.1865 0.2312 0.1687 0.2023 0.2087 0.2405 0.1249 0.1584 0.4983 0.5012

E Proof of Convergence for FedWCM
E.1 Notations and Definitions
Let 𝐹0 = ∅ and define 𝐹 𝑖𝑟 ,𝑘 ∶= 𝜎({𝑥 𝑖𝑟 ,𝑗 }0≤𝑗≤𝑘 ∪ 𝐹𝑟 ) and 𝐹𝑟+1 ∶=
𝜎 (⋃𝑖 𝐹 𝑖𝑟 ,𝐾 ) for all 𝑟 ≥ 0, where 𝜎(⋅) denotes the 𝜎 -algebra.
Let 𝔼𝑟 [⋅] ∶= 𝔼[⋅|𝐹𝑟 ] represent the expectation conditioned
on the filtration 𝐹𝑟 , with respect to the random variables
𝑆𝑟 , {𝜉 𝑖𝑟 ,𝑘 }1≤𝑖≤𝑁 ,0≤𝑘<𝐾 in the 𝑟-th iteration. We also use 𝔼[⋅] to
denote the global expectation over all randomness in the
algorithms.

For all 𝑟 ≥ 0, we define the following auxiliary variable to
facilitate the proofs:

𝜖𝑟 ∶= 𝔼 [‖∇𝑓 (𝑥𝑟 ) − 𝑔𝑟+1‖2] ,
where 𝑔𝑟+1 represents the aggregated gradient at iteration
𝑟 + 1.

We further define:

𝑈𝑟 ∶=
1

𝑁𝐾
𝑁
∑
𝑖=1

𝐾
∑
𝑘=1

𝔼 [‖𝑥 𝑖𝑟 ,𝑘 − 𝑥𝑟 ‖2] ,

where 𝑥 𝑖𝑟 ,𝑘 denotes the 𝑘-th local update of client 𝑖 during the
𝑟-th round and 𝑥𝑟 is the global model at round 𝑟 .

We also introduce:

𝜁 𝑖𝑟 ,𝑘 ∶= 𝔼 [𝑥 𝑖𝑟 ,𝑘+1 − 𝑥 𝑖𝑟 ,𝑘 ∣ 𝐹 𝑖𝑟 ,𝑘] ,
which represents the expected update between successive lo-
cal updates on client 𝑖.

To measure the aggregated local update gradients, we de-
fine:

Ξ𝑟 ∶=
1
𝑁

𝑁
∑
𝑖=1

𝔼 [‖𝜁 𝑖𝑟 ,0‖2] .

Finally, throughout the appendix, let:

Δ ∶= 𝑓 (𝑥0) − 𝑓 ∗, 𝐺0 ∶=
1
𝑁

𝑁
∑
𝑖=1

‖∇𝑓𝑖(𝑥0)‖2,

where 𝑓 ∗ is the optimal function value, and 𝐺0 represents
the initial gradient norm. Additionally, we set 𝑥−1 ∶= 𝑥0 for
notational convenience.

E.2 Preliminary Lemmas
Lemma 1. Let {𝑋1, ⋯ , 𝑋𝜏 } ⊂ ℝ𝑑 be random variables. If

their marginal means and variances satisfy 𝔼[𝑋𝑖] = 𝜇𝑖 and
𝔼[‖𝑋𝑖 − 𝜇𝑖‖2] ≤ 𝜎2, then the following inequality holds:

𝔼[
‖‖‖‖
𝜏
∑
𝑖=1

𝑋𝑖
‖‖‖‖

2
] ≤

‖‖‖‖
𝜏
∑
𝑖=1

𝜇𝑖
‖‖‖‖

2
+ 𝜏2𝜎2.

Additionally, if the random variables are correlated in a
Markov way such that 𝔼[𝑋𝑖 ∣ 𝑋𝑖−1, ⋯ , 𝑋1] = 𝜇𝑖 and 𝔼[‖𝑋𝑖 −
𝜇𝑖‖2] ≤ 𝜎2, i.e., the variables {𝑋𝑖 − 𝜇𝑖} form a martingale, then
the following tighter bound applies:

𝔼[
‖‖‖‖
𝜏
∑
𝑖=1

𝑋𝑖
‖‖‖‖

2
] ≤ 2𝔼 [

‖‖‖‖
𝜏
∑
𝑖=1

𝜇𝑖
‖‖‖‖

2
] + 2𝜏𝜎2.

These results are adapted the work of [10].

Lemma 2. Suppose {𝑋1, ⋯ , 𝑋𝜏 } ⊂ ℝ𝑑 be random variables
that are potentially dependent. If their marginal means and
variances satisfy 𝔼[𝑋𝑖] = 𝜇𝑖 and 𝔼[‖𝑋𝑖 − 𝜇𝑖‖2] ≤ 𝜎2, then it
holds that

𝔼[
‖‖‖‖
𝜏
∑
𝑖=1

𝑋𝑖
‖‖‖‖

2
] ≤

‖‖‖‖
𝜏
∑
𝑖=1

𝜇𝑖
‖‖‖‖

2
+ 𝜏2𝜎2.

If they are correlated in the Markov way such that 𝔼[𝑋𝑖 ∣
𝑋𝑖−1, ⋯ , 𝑋1] = 𝜇𝑖 and 𝔼[‖𝑋𝑖 − 𝜇𝑖‖2] ≤ 𝜎2, i.e., the variables
{𝑋𝑖 − 𝜇𝑖} form a martingale, then the following tighter bound
holds:

𝔼[
‖‖‖‖
𝜏
∑
𝑖=1

𝑋𝑖
‖‖‖‖

2
] ≤ 2𝔼 [

‖‖‖‖
𝜏
∑
𝑖=1

𝜇𝑖
‖‖‖‖

2
] + 2𝜏𝜎2.

These results follow from Lemma 1 in Scaffold [10].

Lemma 3. Let 𝑥𝑟 denote the global model at round 𝑟 , and
let 𝑥 𝑖𝑟 ,𝑘 be the local models for client 𝑖 after 𝑘 local updates.
Assume that the weights 𝑤𝑟𝑖 are computed using the Softmax
function based on the deviation of the local data distribution
from the global distribution, i.e.,

𝑤𝑟𝑖 =
exp(𝑠𝑟𝑖 /𝑇 )

∑𝑁
𝑗=1 exp(𝑠𝑟𝑗 /𝑇 )

,

where 𝑠𝑟𝑖 measures the deviation of client 𝑖’s local distribution
from the global distribution. Then, the weighted average of
the local gradients,

1
𝐾

𝑁
∑
𝑖=1

𝐾
∑
𝑘=1

𝑤𝑟𝑖 ∇𝑓 (𝑥 𝑖𝑟 ,𝑘),

is closer to the global gradient ∇𝑓 (𝑥𝑟 ) than the unweighted
average,

1
𝑁𝐾

𝑁
∑
𝑖=1

𝐾
∑
𝑘=1

∇𝑓 (𝑥 𝑖𝑟 ,𝑘),

in terms of the ℓ2-norm.
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Proof. Define the deviations for each client as:

Δ𝑖 = ∇𝑓 (𝑥𝑟 ) −
1
𝐾

𝐾
∑
𝑘=1

∇𝑓 (𝑥 𝑖𝑟 ,𝑘),

and let the set of deviations be Δ = (Δ1, Δ2, … , Δ𝑁 ). Denote
the weights as 𝑤 = (𝑤1, 𝑤2, … , 𝑤𝑁 ), satisfying ∑𝑁

𝑖=1 𝑤𝑖 = 1
and 𝑤𝑖 ≥ 0. The unweighted average corresponds to uniform
weights 𝑤𝑖 = 1

𝑁 , and the weighted average uses the Softmax
weights.

To prove the inequality, we will explicitly use the inverse
relationship between 𝑤𝑖 and Δ𝑖 , along with the properties of
the rearrangement inequality.

First, sort 𝑤𝑖 and Δ𝑖 such that:
𝑤1 ≤ 𝑤2 ≤ ⋯ ≤ 𝑤𝑁 and Δ1 ≥ Δ2 ≥ ⋯ ≥ Δ𝑁 .

Under this ordering, the pairwise product 𝑤𝑖Δ𝑖 is minimized
compared to any other pairing of 𝑤𝑖 and Δ𝑖 due to the re-
arrangement inequality. Specifically, for any permutation 𝜎
of {1, 2, … , 𝑁 }, the following holds:

𝑁
∑
𝑖=1

𝑤𝑖Δ𝑖 ≤
𝑁
∑
𝑖=1

𝑤𝑖Δ𝜎(𝑖).

Equality is achieved only when Δ𝑖 and 𝑤𝑖 are paired in reverse
order (i.e., the largest Δ𝑖 is matched with the smallest 𝑤𝑖 , and
so on).

Next, consider the unweighted arithmetic mean 1
𝑁 ∑𝑁

𝑖=1 Δ𝑖 ,
which corresponds to the case where all weights are uniform
(𝑤𝑖 = 1

𝑁 for all 𝑖). For uniform weights, we have:

1
𝑁

𝑁
∑
𝑖=1

Δ𝑖 =
𝑁
∑
𝑖=1

1
𝑁 Δ𝑖 .

Now, compare 𝑓 (Δ, 𝑤) = ∑𝑁
𝑖=1 𝑤𝑖Δ𝑖 to this uniform weight-

ing. By the rearrangement inequality, the weighted sum 𝑓 (Δ, 𝑤)
is minimized when 𝑤𝑖 and Δ𝑖 are inversely related (as given in
the problem statement). However, for uniform weights, the
weights 𝑤𝑖 = 1

𝑁 correspond to the mean value of Δ𝑖 , which
is always greater than or equal to the weighted sum 𝑓 (Δ, 𝑤)
when 𝑤𝑖 and Δ𝑖 satisfy the inverse relationship:

𝑁
∑
𝑖=1

𝑤𝑖Δ𝑖 ≤
𝑁
∑
𝑖=1

1
𝑁 Δ𝑖 .

Thus, we have:

𝑓 (Δ, 𝑤) =
𝑁
∑
𝑖=1

𝑤𝑖Δ𝑖 ≤
1
𝑁

𝑁
∑
𝑖=1

Δ𝑖 .

Equality holds if and only if all Δ𝑖 are equal, in which case
the weighting has no effect. This completes the proof. □ □
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E.3 Assumption
Assumption 1. Each local objective function 𝑓𝑖 is 𝐿-smooth, i.e., for any 𝑥, 𝑦 ∈ ℝ𝑑 and 1 ≤ 𝑖 ≤ 𝑁 , we have

‖∇𝑓𝑖(𝑥) − ∇𝑓𝑖(𝑦)‖ ≤ 𝐿‖𝑥 − 𝑦‖.
Assumption 2. There exists 𝜎 ≥ 0 such that for any 𝑥 ∈ ℝ𝑑 and 1 ≤ 𝑖 ≤ 𝑁 , we have

𝔼𝜉𝑖 [∇𝐹(𝑥; 𝜉𝑖)] = ∇𝑓𝑖(𝑥),
and

𝔼𝜉𝑖 [‖∇𝐹(𝑥; 𝜉𝑖) − ∇𝑓𝑖(𝑥)‖2] ≤ 𝜎2,
where 𝜉𝑖 ∼ 𝒟𝑖 are independent and identically distributed.

E.4 Proof of FedWCM
Lemma 4. If 𝛾𝐿 ≤ 𝛼𝑟

6 , the following holds for 𝑟 ≥ 1:

𝜖𝑟 ≤ (1 − 8𝛼𝑟
9 ) 𝜖𝑟−1 +

4𝛾 2𝐿2
𝛼𝑟

𝔼[‖∇𝑓 (𝑥𝑟−1)‖2] +
2𝛼2𝑟 𝜎2
𝑁𝐾 + 4𝛼𝑟𝐿2𝑈𝑟 .

Additionally, it holds for 𝑟 = 0 that

𝜖0 ≤ (1 − 𝛼0)𝜖−1 +
2𝛼20𝜎2
𝑁𝐾 + 4𝛼0𝐿2𝑈0.

Proof. For 𝑟 ≥ 1, we have
𝜖𝑟 = 𝔼[‖∇𝑓 (𝑥𝑟 ) − 𝑔𝑟+1‖2]

= 𝔼 [‖(1 − 𝛼𝑟 )(∇𝑓 (𝑥𝑟 ) − 𝑔𝑟 ) + 𝛼𝑟 (∇𝑓 (𝑥𝑟 ) −
1
𝐾 ∑

𝑖
𝑤𝑖 ∑

𝑘
∇𝐹(𝑥 𝑖𝑟 ,𝑘 ; 𝜉 𝑖𝑟 ,𝑘)) ‖2]

Expanding the square, we get

𝜖𝑟 = 𝔼[‖(1 − 𝛼𝑟 )(∇𝑓 (𝑥𝑟 ) − 𝑔𝑟 )‖2] + 𝛼2𝑟 𝔼[
‖‖‖‖
∇𝑓 (𝑥𝑟 ) −

1
𝐾 ∑

𝑖,𝑘
𝑤𝑖∇𝐹(𝑥 𝑖𝑟 ,𝑘 ; 𝜉 𝑖𝑟 ,𝑘)

‖‖‖‖

2
]

+2𝛼𝑟𝔼[⟨(1 − 𝛼𝑟 )(∇𝑓 (𝑥𝑟 ) − 𝑔𝑟 ), ∇𝑓 (𝑥𝑟 ) −
1
𝐾 ∑

𝑖,𝑘
𝑤𝑖∇𝑓 (𝑥 𝑖𝑟 ,𝑘)⟩] .

Note that {∇𝐹(𝑥 𝑖𝑟 ,𝑘 ; 𝜉 𝑖𝑟 ,𝑘)}0≤𝑘<𝐾 are sequentially correlated. Using the AM-GM inequality, Lemma 1 and Lemma 3, we have

𝜖𝑟 ≤ (1 + 𝛼𝑟
2 )𝔼[‖(1 − 𝛼𝑟 )(∇𝑓 (𝑥𝑟 ) − 𝑔𝑟 )‖2] + 2𝛼𝑟𝐿2𝑈𝑟 + 2𝛼2𝑟 (

𝜎2
𝑁𝐾 + 𝐿2𝑈𝑟) .

Using the AM-GM inequality again and Assumption 1, we obtain

𝜖𝑟 ≤ (1 − 𝛼𝑟 )2 (1 +
𝛼𝑟
2 ) 𝜖𝑟−1 + (1 + 𝛼𝑟

2 ) 𝐿2𝔼[‖𝑥𝑟 − 𝑥𝑟−1‖2] + 2𝛼2𝑟
𝜎2
𝑁𝐾 + 4𝛼𝑟𝐿2𝑈𝑟 .

Substituting ‖𝑥𝑟 − 𝑥𝑟−1‖2 ≤ 2𝛾 2(‖∇𝑓 (𝑥𝑟−1)‖2 + ‖𝑔𝑟 − ∇𝑓 (𝑥𝑟−1)‖2) and using 𝛾𝐿 ≤ 𝛼𝑟
6 , we get

𝜖𝑟 ≤ (1 − 8𝛼𝑟
9 ) 𝜖𝑟−1 +

4𝛾 2𝐿2
𝛼𝑟

𝔼[‖∇𝑓 (𝑥𝑟−1)‖2] +
2𝛼2𝑟 𝜎2
𝑁𝐾 + 4𝛼𝑟𝐿2𝑈𝑟 .

Similarly, for 𝑟 = 0,

𝜖0 ≤ (1 + 𝛼0
2 )𝔼[‖(1 − 𝛼0)(∇𝑓 (𝑥0) − 𝑔0)‖2] + 2𝛼0𝐿2𝑈0 + 2𝛼20 (

𝜎2
𝑁𝐾 + 𝐿2𝑈0) .

Thus, we have

𝜖0 ≤ (1 − 𝛼0)𝜖−1 +
2𝛼20𝜎2
𝑁𝐾 + 4𝛼0𝐿2𝑈0.

□
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Lemma 5. If 𝜂𝐿𝐾 ≤ 1
𝛼𝑟

, the following holds for 𝑟 ≥ 0:

𝑈𝑟 ≤ 2𝑒𝐾2Ξ𝑟 + 𝐾𝜂2𝛼2𝑟 𝜎2 (1 + 2𝐾3𝐿2𝜂2𝛼2𝑟 ) .
Proof. Recall that 𝜁 𝑖𝑟 ,𝑘 ∶= 𝔼[𝑥 𝑖𝑟 ,𝑘+1 − 𝑥 𝑖𝑟 ,𝑘 |𝐹 𝑖𝑟 ,𝑘] = −𝜂((1 − 𝛼𝑟 )𝑔𝑟 + 𝛼𝑟∇𝑓𝑖(𝑥 𝑖𝑟 ,𝑘)). Then we have

𝔼[‖𝜁 𝑖𝑟 ,𝑗 − 𝜁 𝑖𝑟 ,𝑗−1‖2] ≤ 𝜂2𝐿2𝛼2𝑟 𝔼[‖𝑥 𝑖𝑟 ,𝑗 − 𝑥 𝑖𝑟 ,𝑗−1‖2] ≤ 𝜂2𝐿2𝛼2𝑟 (𝜂2𝛼2𝑟 𝜎2 + 𝔼[‖𝜁 𝑖𝑟 ,𝑗−1‖2]).
For any 1 ≤ 𝑗 ≤ 𝑘 − 1 ≤ 𝐾 − 2, using 𝜂𝐿 ≤ 1

𝛼𝑟𝐾
≤ 1

𝛼𝑟 (𝑘+1)
, we have

𝔼[‖𝜁 𝑖𝑟 ,𝑗 ‖2] ≤ (1 + 1
𝑘 )𝔼[‖𝜁

𝑖𝑟 ,𝑗−1‖2] + (1 + 𝑘)𝐿2𝜂4𝛼4𝑟 𝜎2.

Unrolling the recursive bound and using (1 + 2
𝑘 )

𝑘
≤ 𝑒2, we get

𝔼[‖𝜁 𝑖𝑟 ,𝑗 ‖2] ≤ 𝑒2𝔼[‖𝜁 𝑖𝑟 ,0‖2] + 4𝑘2𝐿2𝜂4𝛼4𝑟 𝜎2.
By Lemma 2, it holds that for 𝑘 ≥ 2,

𝔼[‖𝑥 𝑖𝑟 ,𝑘 − 𝑥𝑟 ‖2] ≤ 2𝔼[(
𝑘−1
∑
𝑗=0

𝜁 𝑖𝑟 ,𝑗)
2
] + 2𝑘𝜂2𝛼2𝑟 𝜎2 ≤ 2𝑒2𝑘2𝔼[‖𝜁 𝑖𝑟 ,0‖2] + 2𝑘𝜂2𝛼2𝑟 𝜎2 (1 + 4𝑘3𝐿2𝜂2𝛼2𝑟 ) .

This is also valid for 𝑘 = 0, 1. Summing up over 𝑖 and 𝑘 finishes the proof. □

Lemma 6. If 288𝑒(𝜂𝐾𝐿)2 ((1 − 𝛼𝑟 )2 + 𝑒(𝛼𝑟 𝛾𝐿𝑅)2) ≤ 1, then it holds for 𝑟 ≥ 0 that
𝑅−1
∑
𝑟=0

Ξ𝑟 ≤
1

72𝑒𝐾2𝐿2
𝑅−2
∑
𝑟=−1

(𝜖𝑟 + 𝔼[‖∇𝑓 (𝑥𝑟 )‖2]) + 2𝜂2𝛼2𝑟 𝑒𝑅𝐺0.

Proof. Note that 𝜁 𝑖𝑟 ,0 = −𝜂((1 − 𝛼𝑟 )𝑔𝑟 + 𝛼𝑟∇𝑓𝑖(𝑥𝑟 )), so we have

1
𝑁

𝑁
∑
𝑖=1

‖𝜁 𝑖𝑟 ,0‖2 ≤ 2𝜂2 ((1 − 𝛼𝑟 )2‖𝑔𝑟 ‖2 + 𝛼2𝑟
1
𝑁

𝑁
∑
𝑖=1

‖∇𝑓𝑖(𝑥𝑟 )‖2) .

Using Young’s inequality, we have for any 𝑞 > 0 that
𝔼[‖∇𝑓𝑖(𝑥𝑟 )‖2] ≤ (1 + 𝑞)𝔼[‖∇𝑓𝑖(𝑥𝑟−1)‖2] + (1 + 𝑞−1)𝐿2𝔼[‖𝑥𝑟 − 𝑥𝑟−1‖2].

Summing over 𝑟 and applying the upper bound of 𝜂 completes the proof. □

Theorem E.1. Under Assumptions 1 and 2, if we take 𝑔0 = 0, 𝛼𝑟 = min (√
𝑁𝐾𝐿Δ
𝜎2𝑅 , 1) for any constant 𝑐 ∈ (0, 1], 𝛾 = min ( 1

24𝐿 ,
𝛼𝑟
6𝐿),

and

𝜂𝐾𝐿 ≲ min (1, 1
𝛼𝑟 𝛾𝐿𝑅

, ( 𝐿Δ
𝐺0𝛼3𝑟 𝑅

)
1/2

, 1
√𝛼𝑟𝑁

, 1
(𝛼3𝑟 𝑁𝐾)1/4 ) ,

then FedWCM converges as
1
𝑅

𝑅−1
∑
𝑟=0

𝔼[‖∇𝑓 (𝑥𝑟 )‖2] ≲ √
𝐿Δ𝜎2
𝑁𝐾𝑅 + 𝐿Δ

𝑅 .

Here 𝐺0 ∶= 1
𝑁 ∑𝑁

𝑖=1 ‖∇𝑓𝑖(𝑥0)‖2.
Proof. Combining Lemmas 4 and 5, we have

𝜖𝑟 ≤ (1 − 8𝛼𝑟
9 ) 𝜖𝑟−1 + 4(𝛾𝐿)2 1

𝛼𝑟
𝔼[‖∇𝑓 (𝑥𝑟−1)‖2] + 2𝛼2𝑟

𝜎2
𝑁𝐾 + 4𝛼𝑟𝐿2 (2𝑒𝐾2Ξ𝑟 + 𝐾𝜂2𝛼2𝑟 𝜎2 (1 + 2𝐾3𝐿2𝜂2𝛼2𝑟 )) ,

and

𝜖0 ≤ (1 − 𝛼0)𝐸−1 + 2𝛼20
𝜎2
𝑁𝐾 + 4𝛼0𝐿2 (2𝑒𝐾2Ξ0 + 𝐾𝜂2𝛼20𝜎2 (1 + 2𝐾3𝐿2𝜂2𝛼20 )) .

Combining these with Lemma 6 and applying the choice of 𝜂, 𝛾 , and 𝛼0 completes the proof. □
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